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Introduction

Sensitivity analysis is emerging as a fruitful area of engineering research. The rea-

son for this interest is thc recognition of the variety of uses for sensitivity derivatives. In

its early stages, sensitivity analysis found its prcdominant use in assessing the effect of

varying parameters in mathematical models of control systems; see, for eXample, the texts

of Tomovic, 1 Brayton and Spence, 2 Frank, 3 and Radanovic 4 for discussions of the early

development of sensitivity thcory. Intercst in optimal control in the early 1960s (see, for

example, Ref. 5) and automated structural optimization (see for cxample, Ref. 6) led to the

use of gradient-based mathematical programming methods in which derivatives were used

to find search directions toward optimum solutions. More recently, there has been strong

interest in promoting systematic structural optimization as a useful tool for the practicing

structural design engineer on large problems .... a process still under way. Early attempts

to use formal optimization for large structural systems resulted in excessively long and

expensive computer runs. Examination of the optimization procedures indicated that the

predominant contributor to the cost and time was the calculation of derivatives. As a con-

sequence, emerging interest in sensitivity analysis has emphasized ctYicicnt computational

procedures. In addition, rcscarchcrs have developed and applied scnsitivity analysis for

approximate analysis, analytical model improvement, and assessment of design trends---so

that structural sensitivity analysis has bccomc m0rc than a utility for optimization and is

a versatile design tool in its own right. Most reccntly, researchers in disciplines such as

physiology, 7 thermodynamics, s physical chemistry, 9 and aerodynamics, l°-n have been us-

ing sensitivity methodology to assess the effects of parameter variations in their analytical

models and to create designs insensitive to paramctcr variation. 13'14

Derivatives of structural response can be calculated analytically at three stages. Wc



can differentiatie the continuum equations defining the responseof the structure. We can

differentiate the equations obtained when the continuum equations are discretized which
is the topic of the present chapter. Finally, we can differentiate directly the computer

program usedto solvethe structural response,suchas a finite element computer program.

This third approach is not discussedin this textbook, but the intercstcd reader is referred

to Refs 15and 16. Analytical derivative calculations typically entail a substantial effort of

analysisand softwaredevelopment. In many casesit is better to usederivatives obtained

from a finite differenceapproximation. This chapter therefore starts with the discussion

of the calculation of dcrivativcs by finite differcnces.

Finite Difference Sensitivities

Truncation and Condition Errors

The simplest finite difference approximation is the first-order forward-difference ap-

proximation. Given a function g(v) of a design variable v, the forward-difference approxi-

mation Ag/Av to the derivative dg/dv is givcn as

22 = g(" + A,) - (1)
Av Av

Another commonly used finite-difference approximation is the second-order central-difference

approximation

Ag g(v + Av) - g(v- Av)
A--7= 2av (2)

It is also possible to employ higher-order finite-difference approximations, but they are

rarely u_d in structural optimization applications because of the associated high compu-

tational cost. If we need to find the derivatives of the structural response with respect to n

design variables the forward-difference approximation requires n additional analyses, the

central-difference approximation 2n additional analyses, and higher order approximations

are even more expensive.

The key to the selection of the approximation and the step size Ax is an estimate of

the required accuracy. This topic is discussed in Ref. 17, and is summarized next.

Whenever finite-difference formulae are used to approximate derivatives, there are

two sources of error: truncation and condition errors. The truncation error eT(Av) is a

result of the neglected terms in the Taylor series expansion of the perturbed function. For
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example,the Taylor seriesexpansionof g(v + Av) can be written as

(Av) 2 d2g.g(v + _,) = g(v)+ m, (v)+ 2 _-_2(v+ (Av) , 0 < ff _< 1 (3)

From Eq. (3) it follows that the truncation error for the forward-difference approximation

is

eT(Av) = --%vd2g (v_v2, +(Av) 0<(< 1 (4)

Similarly, by including one more term in the Taylor series expansion we get that the

truncation error for the central difference approximation is

eT(Av) = Av2 d3g (v + _Av) 0 < ¢ < 1 (5)

The condition error is the difference between the numerical evaluation of the function and

its exact value. One contribution to the condition error is round-off error in calculating

dg/dv from thc original and perturbed values of g. This contribution is comparatively

small for most computcrs unless Av is extremcly small. Itowcvcr if g(x) is computed by

a lengthy or ill-conditioned numcrical process, thc round-off contribution to the condition

crror can bc substantial. Additionally, condition errors may result if g(x) is calculated

by an iterative process which is tcrminated early. If we have a bound eg on the absolute

error in the computed function g, we can estimate the condition error. For example, for

the forward-difference approximation the condition error ec(Av) is (very!) conservatively

estimated from Eq. (1) as

2

ec(av) = _7_ (s)

Equations (4) and (6) present us with the so called "step-size dilemma." If we select the

step sizc to be small, so as to reduce the truncation error, we may have an excessive

condition error. In some cases thcre may not be any step size which results in acceptable

crror!

A bound e on thc total error, the sum of the truncation and condition errors, for the

forward-diffcrence approximation is obtained from Eqs. (4) and (6) as

Av 2
e = _---18hi+

2' '
(7)
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where Sb is a bound on the second derivative in the interval [v, v + Av]. When eg and sb

are available it is possible to calculate an optimum step-size that minimizes e as

Avopt = 2 e_bl (S)

Procedures for estimating sb and e_ are given in Ref 17 and 18.

Iteratlvely solved Problems

Condition errors can become important when iterative methods are used for perform-

ing some of the calculations. Consider a simple example of a single displacement component

u which is obtained by solving a nonlinear algebraic equation which depends on one design

variable v

f(v, u) = 0 (0)

The solution of Eq. (9) is obtained by an iterativc process which starts with some initial

guess of u and terminates when the iterant fi is estimated to bc within some tolerance e of

the exact u (Note that e is a bound on the condition error in u). To calculate the derivative

du/dv assume that we use the forward-difference approximation. That is, we perturb v by

Av and solve Eq. (9) for utx

/(v + Av, = 0 (10)

The iterative solution of Eq. (10) yields an approximation fia, and then du/dv is approxi-

mated as
du fiA - f_
--_-- (11)
dv Av

To start the iterative process for obtaining uzx, two initial guesses come to mind. The first

is to start with the same initial guess that was used to solve for u. If the convergence of

thc itcrative process is monotonic there is a good chance that when we use Eq. (11) the

errors in _ and fiA will almost cancel out, and wc will get a very small condition error.

The other logical initial guess for ua is ft. This initial guess is known to be good because

Ax is typically small, and so wc may get fast convergencc. Unfortunately, this time we

cannot expect the condition errors to cancel. As wc iterate on _2A, the original error (the

diffcrcncc bctween u and _) will bc reduced at the same time that the change due to Ax

is taking cffcct (consider, for example, what happens if Ax is set to zero, or an extremely

small number).

Rcfcrcncc 19 suggests a strategy which allows us to start the iteration for uzx from _2

without worry of excessivc condition errors. The approach is to pretend that _ is the exact



rather than approximate solution by changingthe problem that we want to solve. Indeed,
fi is the exact solution of

f(v,u/-- f(v,_) =0 (12)

which is only slightly different from our original problem (because f(v, fi) is almost zero).

We now find the derivative du/dv from Eq.(12), by obtaining ua as the solution of

f(v + Av, UA) -- f(v, _) = 0 (13)

Because fi is the exact solution of this equation for Av = 0 the iterative process will only

reflect the effect of Av, and we will obtain a good approximation from Eq. (11).

Because of the high cost and the accuracy problems associated with finite-difference

derivatives, there has been much effort into developing analytical derivative approxima-

tions. The rest of this chapter is devoted to such analytical expressions for sensitivity

derivatives.

Sensitivity of Static Response

First Derivatives of Linear Response

This section of the paper focuses On the calculation of first derivativcs of static linear

structural response (displacements and stresses) computed from finite element models.

The governing equation for displacement is

._ KU = F (14)

where K'is the Symmetric stiffness matrix of order n x n, U the vector of displacements,

and F the vector 0f applied forces. : Bot]a g and F are, in genera], functions of design

variables v. A typical function of displacement (e:g., a constraint)Will be represented as

g=g(U,v), U= U(v) (15)

Analytical calculations of derivatives Of displacemcnts and their functions have been per-

formed by three methods: the direct or design space method, the atjoint variable or state

space method, and the virtual load method. The virtual load method is a special case of

the direct method. Both the direct and adjoint methods begin with the differentiation of

Eqs. (14) and (15).

KdU _ OF OK U =_ R_, (16)
dv Ov Ov



dg ag f ag_ T dU

d"_ -_ 4- k, gU] dv
(17)

The direct method is to solve Eq. (16) for d U/dv and substitute d U/dv into Eq. (17).

Equation (16) needs to be solved once for each design variable v so that the direct method

is costly when the number of design variables is large.

The adjoint variable or state space method starts by defining a vector of adjoint

variables that satisfies the equation

K_= gg
ou (18)

where Og/O U is sometimes referred to as the dummy load vector. (If g is a particular

displaccment component, then Og/OU corresponds to a force of unit magnitude in the

direction of the component.) Then using Eqs. (16-18),

dg Og

d"'_ = 0"-_ + ._T Rv (19)

The adjoint variablc mcthod requires the solution of Eq. (18) once for each function g.

Thcrefore, if the number of functions is smaller than the number of design variables, the

adjoint variable method is more efficient and, conversely, if the number of design variables

is smaller, the direct approach is more efficient. Both the direct and adjoint methods

involve fewer computations than the finite difference approach, which requires repeated

factorization of the stiffness matrix, whercas the dircct and adjoint methods require a

single factorization with several right-hand sides.

CaIcuIalion of OK/Ov

An important computational task in the adjoint and direct methods is the calculation

of OK�Or. If the structural model contains only elements whosc stiffness matrix is pro-

portional to v (such as rods whcrc v is the cross-sectional area or mcmbranes and shear

panels whcrc v is the thickness), OK�Or is a constant matrix. But for elements having

bcnding stiffness such as beams and plates, the stiffness matrix is a nonlinear function of

the cross-sectional dimensions, and the stiffness matrix derivatives are not easily evaluated.

The difficulties associated with shape design variables are even more severe. Analytical

cxprcsssions for dcrivatives of the stiffness matrix are cumbersome and more expensive

to cvaluate than the stiffness matrix itself. Furthermore, coding analytical derivatives of

6



stiffnessmatrices with respect to all possibledesignvariables is a formidable task, espe-

cially that in many casesusersof structural analysissoftwarethat doesnot havesensitivity

capabilities do not have accessto the source codeof the software. For these reasons,the

preferredapproach by most analystsis to compute OK�Or by finite differences. This com-

bination of analytical derivative experssions such as Eq. (19) coupled with finite-difference

evaluation of the stiffness matrix is known as the semi-analytical method.

Unfortunately, the semi-analytical method is prone to large errors for some shape de-

sign variables. The problem was explained in Ref. 20 by noting that Eq. (16) treats the

sensitivity of the displacement vector as the solution of a structural analysis problem with

the load replaced by the pseudo-load vector R.. This presupposes that the derivative of

the displacement vector is a legitimate displaccmcnt vector itself, which is not always the

case. A simple example when the derivative of thc displacement vector is not a legitimatc

displacement is a nearly incompressible material (Poisson's ratio close to 0.5). The deriva-

tive of the displacement with respect to shape changes, treated as a displacement field,

would typically represent large volume changes. Thus the pseudo-load vector, Ro, would

need to have extremely large components to extract such large volume changes from a

nearly incompressible material. In such a case, the small truncation errors associated with

the finite-difference calculation of the pseudo load aregreatly amplified with a resulting

very poor accuracy of the semi-analytical sensitivities. A similar phenomenon can occur

for shape changes in bending problems, such as those associated with beams, plates and

shells. The sensitivity field is often dominated by shear deformations. Since it is very

difficult to force a slender beam or a thin shell to undergo large shearing deformations, we

again require very large pseudo loads with disastrous effects of small errors in these loads.

Calculation of Second Derivatives

Second derivatives of displacement and constraint functions arc used for approximate

analysis, and for the calculation of derivatives of optimal solutions. Such derivatives may

bc obtained by diffcrcntiating Eqs. (16) and (17), for example,

d2U 0P_ 0P_ dU

K'-d'_-v2= 0----_-+ OU dv

d2g O_g + 2 ( 02g
dv--7 = O---v \ O--O-Ov

T d2U

dv 2

(20)
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However, for m design variables there are m(m + 1)/2 second derivatives, and Eqs. (20)

need to be solved for that many right-hand sides. It is possible to proceed with a more

efficient approach to use Eq. (18) to obtain

d2g c92g + _ O2g ) dU _T _COR_, COR,,dU) (21)dv"--'_ = Ov-_ \O--U-Or _ + \ Ov + OU dv

This approach requires the solution of Eq. (16) for all the first derivatives and Eq. (6) for

all vectors of adjoint variables.

Stress Derivatives

The stresses in an element may be obtained from the displacements using

a = SU- GT (22)

where a is a vector of element stresses, T is an element temperature, and S and G are

stress-displacement and stress-temperature matrices, respectively.

Derivatives of stresses may be obtained by differentiating Eq. (22).

da sdU cOS cOGT
d-'_= dv +_vvU-_ (23)

For finite elements such as rods, membranes, and shear panels, S and G are independent

of v, and stress derivatives are obtained by simply substituting dU/dv for U and T = 0

in Eq. (22). For bending-type elements, S and G may be functions of v and the complete

expression must bc used; see Camarda and Adelman. 21

Derivatives of Nonlinear Response

In the case of nonlinear analysis, the equations of equilibrium may be written as

P(U, v) = #F(v) (24)

where P is the internal force generated by the deformation of the structure, and #F is

the external applied load. The load scaling factor # is typically used in nonlinear analysis

procedures for tracking the evolution of the solution as the load is increased. This is useful

because the equations of equilibrium may have several solutions for the same applied loads.
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By increasing # gradually we make sure that we obtain the solution that correspondsto

the structure being loaded from zero.

Differentiating Eq. (24) with respect to thc designvariablc v we obtain

jdU dF OF (25)
= o,,

where J is the Jacobian of P at U,

0Fk
Jkl -- (26)

out

often called the tangential stiffness matrix.

The direct method for obtaining dg/dv is to solve Eq. (25) for dU/dv and substitute

into Eq. (17). The matrix J is often available from the solution of the equations of

equilibrium when thcse are solved by using Ncwton's method. Newton's method is bascd

on a lincar approximation of the equations of cquilibrium about a trial solution

P(U, v) q- J(U, v)(U - U) _ #F(v) (27)

Equation (27) solved for U, typically provides a better approximation to U than U. This

new approximation replaces U in Eq. (27) for the next iteration, either with an updated

value of J (Newton's method) or with the old value ( modified Newton's method). The

iteration continues until convergence to a desired accuracy is achieved. If the last iterate

U, for which J was calculated, is close enough to U, then that J can be used for calculating

the derivative of U.

The adjoint approach is very similar to that used in the linear case. The adjoint vector

is the solution of the cquation

jT)__ 09 (28)
OU

Then it is easy to check that wc obtain

d g c99 _v O P°v ) (29)

Sensitivity of Eigenvalues and Eigenvectors

9



Distinct Eigenvalues

The general problem is to compute derivatives of eigenvalues and eigenvectors with

respect to design variables or system parameters. For reference purposes, the most general

case considered is the following eigenvalue problcm:

AX = ,kBX (30)

yT A -- A yT B (31)

yrBx = 1 (32)

where ,k is an eigenvalue (generally complex). The generally nonsymmetric real n × n

matrices A and B are assumed to be explicit functions of a set of design variables v,

and X and Y are right and left eigenvectors, respectively. The first result on eigenvalue

derivatives was published by Jacobi, 22 who developed the result for the special case of"

symmetric A, and B -- I

Oh yT OA X
= _-v (33)

Wittrick 23 applied Jacobi's formula for the case of a symmetric matrix to the derivatives of

buckling eig(,.nvalues and presented results for the change in buckling loads of plates with

respect to aspect ratio and thickness.

Fox and Kapoor 24 and Fox 25 considered the special case of symmetric A and B ma-

trices. For eigenva!ues their formula is

- x (34)

in which it is assumed that the cigenvectors are normalized such that

X TBX = 1 (35)

For cigcnvcctor derivatives, two methods are presented by Fox and Kapoor. The first is

to diffcrcnti;_te Eq. (30), giving a set of simultaneous equations for the eigenvalue and

cigcnvcctor derivatives. Differentiating the eigenvalue problem of Eq. (30) gives

OA 0)_ ,_ OB "_(A - :kB ) O_v - _v -_v B - -ifw] X

10
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The matrix A - ),B is singular since >, is an eigenvalue. The set is solvable only after alge-

braic manipulation, which destroys the banded nature of the equations, a point that arises

later in connection with another method: The second method for eigenvector derivatives,

developed by Fox and Kapoor, is to expand the derivative as a series 0f eigenvect0rs. Thus,

for the ith eigenvector

OX_ n
=_ a,_x, (37)

k=-i

The coefficients aik arc obtained by'substituting Eq. (37) into Eq. (36)i In principle,

it is necessary to use all n modes in the expansion of Eq. (37). However, as with the

modal method generally, it should be possible to obtain reasonable results with fewer than

n eigenvectors. A modification of the method of Fox and Kapoor which has exhibited

faster convergence 2s:iS:_Jen0ted the modred modM_method 27. This method represents

the eigenvector derivative as

OXi OXi _ '_

o--7= _-] + _] a,_x_ (38)
s k:l

ox)where T, is denoted a "psuedo static" solution which satisfies the equation

5

(39)

The coefficients aik are obtained by substituting eq. (38) into eq. (36).

Rogers 2s and Stcwart 29 derived sensitivity formulas for eigenvalues and eigenvectors

of the gcncral problcm [Eqs. (30) and (31)]. For eigenvalues the equation is

(oA0v = _ 0v ] x (40)

Rogers expressed the eigenvector derivatives as an expansion in terms of the eigenvectors

OXi " 0 Yi = E bik Yk (41)

k=l k=l

11



The coefficientsaik and bik are computed by substituting Eqs. (41) into an expression :

obtained by differentiating the eigenvalue problem and combining it with appropriate or-

thogonality conditions.

An alternate method for calculation of eigenvector derivatives for the symmetric prob-

lem is due to Nelson. 3° The method of Nelson is to represent the eigenvector derivative

as

cOX

= v + cx (42)

where V is the sotution of a reduced version of Eq. (36) obtained by deleting the kth row

and column from A - )_B (where k is chosen to correspond to the maximum component

of X) and setting the kth component of V equal to zero. The multiplier c is evaluated

by substituting Eq. (42) into Eq. (36). This method has certain advantages ovcr previ-

ous eigcnvcctor derivative techniques: it requires only the eigenvalue and eigenvector for

the mode being differentiated, and the equation for V retains the banded character of

coefficient matrix unlike the algebraic methods (e.g., Fox and Kapoor).

Repeated Eigenvalues

The sensitivity of repeated eigenvalues has been a focus of recent interest, even though

the eigenvalues are not differentiable and only directional derivatives can be found. For the

real symmetric case, a generalization of Nelson's method which preserves the bandedness of

the matrix was obtained by Ojalvo 31 and amended by Mills-Curran 32 and Daily 33. These

methods compute the derivatives of the m eigenvectors corresponding to eigenvalues of

multiplicity m. As stated by Dailey (see also Lancaster34), when the eigenvalues are

repeated and a design variable is perturbed, the eigenvcctors "split" into as many as m

distinct cigenvectors. Wc scck the derivatives of these distinct eigenvectors which "appear"

with design variable perturbation. Using Dailey's notation, define the eigcnvalue problem

KX = MXA, (43)

where X contains the m cigenvcctors cited previously, and

A = AI, (44)

where _ is the repeated eigenvalue and I is the identity matrix of order m. The normal-

ization condition, Eq. (35) is now

x rMx = I. (45)
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The eigenvectorswhich appear as a result of the splitting are contained in a matrix
denoted Z which is related to X as follows

Z = X (46)

where is a set of orthogonal vectors to be determined. To simplify the notation we

consider a single design variable v, and denote derivatives with respect to that design

variable by a prime. The technique for calculating Z' as contained in Daily is outlined

next. The vector and the derivative of the multiple eigenvalues A' are obtained as

solutions of the following eigenvalue problem

D = A', (47)

where

with a normalization condition

D = XT(K '- AM')X,

T

Next in a manner analogous to Nelson 3° let

(48)

= I. (49)

Z I = V + ZC, (50)

where V is the solution to

(K - AM)V = (AM' - K')Z + MZA', (51)

(numerically obtained by removing m rows and columns from K - AM using the strategy

described in Reference 32) and C is a matrix which is obtained as the solution to the

equation

CA'-A'C+IA "= -zT(K'-AM')V-ZT(M'Z+MV)A'+I zT(K"-AM")Z -- R. (52)

Equation (52), which requires substantial algebraic manipulations for its derivation, deter-

mines the matrix C and the matrix of second derivatives of the eigenvalues A". Fortunately

A" is diagonal and CA' - A'C always has zero on the diagonal. Therefore, we can solve

for the matrix C separate from A", and the latter matrix only needs to be calculated if it

is nccdcd for some other purpose.

13



Using Eqs. (45), (46) and (49) we have

Z T MZ = TXTMX

Differentiate Eq. (53) and use Eq. (50) to obtain

from which

= I. (53)

C + C T -- -VTMZ - ZTMV - ZTM'z =. Q,

1
cai = - qii

2

The non-diagonal elements of C are

rij
cij -- I i

(54)

(55)

i _ j )_ _ )_. (56)

For the case where )_ = )_ i _ j, eq. (56) may not be used. The situation here is

that thc eigcnvalues are not "splitting" whcn the design variable is perturbed because the

design variable is affccting both in exactly thc same way. In such a case, Z' is not unique

and any values of cq and cji satisfying Eq. (54) may be used. Dailey proposes the choice
1 t

cij = cji = "_qij whenever ,k_ = ,kj.

Before leaving the topic of derivatives associated with repeated eigenvalues, we note

the limited utility of such derivatives. For example, the eigenproblem is differentiable in

terms of a single parameter, but not as a function of several. This may be demonstrated

by the example where the matrix

Tile eigenvalues of A are

=2+ + v/x + y2/4. (58)

At x = y = 0, the eigenvalucs are repeated and O)_/Ox= +i,O)_/Oy = 0, 1. However, the

cigcnvahms arc not diffcrentiable as a function of both x and y, that is the relation

0)_ 0)_ d
d)_ _xxdX + _ y

14
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does not hold. Therefore, the utility of the partial derivatives is questionable. The eigen-

vectors are also discontinuous at (0, 0). This can be checked by noting that at (e, 0), the

eigenvectors are (1,0) and (0,1) and at (0, e) they are (1,1) and (1,-1) no mater how

small e is.

Sensitivity derivatives for nonlinear eigenvalue problems

In flutter and nonlinear vibration problems, we encounter eigenvalue problems where

the dependence on the eigenvalue is not linear. For example, Bindolino and Mantegazza 35

consider aeroelastic response problem which produces a transcendental eigenvalue problem

of the form

A(_, v)X = 0. (60)

Differentiating Eq. (60) we get

A OX c%_OA OA
+ Ov 0)_ = - 0"-_X" (61)

Using the normalizing condition Xm = 1 we can solve Eq. (61) for OX/Ov and O._/Ov.

Instead, it is also possible to use the adjoint method, employing the left eigenvector Y

satisfying

yT A = 0, Ym -- 1 (62)

we obtain

0 )_ YT _v X

O'-v = TO A . (63)

r b- x

A common treatment of flutter problems is to have two real parameters representing

the approach of the frcquency and speed as an cigenpair instead of one complex eigenvalue.

For example in Murthy 36, Eq. (60) is replaced by

A(M,w,v)X =0, (64)

where the Mach number, M, and the frequency, w, are real parameters. Using this ap-

proach, differentiate Eq. (64) and premultiply by yW to get

OM Ow

fM _V + fW _v = - ft,, (65)

15



where

r OA T OA yT OA X
fM = Y -_X, f_ = Y -_wX, f,,= _ .

Multiplying Eq. (65) by f_ (the complex conjugate of f_)we:get

OM 12O_/,,,L _ + I /,_ _ = -L/,,

(66)

(67)

OM
The second term in Eq. (67) as well as _ are real, so by taking the imaginary part of

Eq. (67) we get

yT OAOM Im(LL,) I., [( :x) k.:._)]t'_'r°a':"

_.,'T O.,I - " (68)
Ov = Im(fMf,,,) = irn[(YT_MX) ( _..sX)]

Next, multiplying Eq. (65) by fM and following a similar procedure gives

Rudisill and Bhatia 37 have a derivation of the flutter eigenpair that employs the

reduced frequency and flutter speed as the eigenpair and provides also second derivativcs.

It is possible to treat in a similar manner the case where the nonlinearity is in X

instead of in A. For example, Hou et al. 3s treated the nonlinear vibration problem

K(X)X-AMX=O

Differentiating Eq. (70) with respect to v we obtain

(70)

(J AM) OX 0)_ OK OM
Ov MX -[--ff'v'v- = -_,---_-]x

where J is the tangent stiffness matrix whose components are given as

(71)

OKik
J,j = gij q- Z O--_j Xk

k

(72)
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Equation (71) can now be solvedfor eigenvcctorderiviativcs using Nelson'smethod. For

eigenvalueof derivatives usethe left eigenvectorsatisfying

.... :i ::: :: : yT(j_)_M)=O (73)

Premultiply Eq. (7I) by yT to obtain

0_ - t-or (74)
Ov yT M X

Sensitivity of Transient Response

General

The discussion of sensitivity analysis of transient structural response is usually based

on the equations of motion written as a system of second-order differential equations.

However, this form obscures the similarity of structural sensitivity analysis to sensitivity

analysis in other fields where first-order differential equations are employed and is also less

compact than a first-order formulation. For these reasons the initial discussion will focus

on a system of first-order differential equations, and the case of a second-order system will

be limited to linear structural dynamics, following the general discussion. We start with a

system of first-order ordinary differential equations of the form

br -- F( U, t, v) (74)
U(0) = G

where U is the response, F a vector of functions, t time, and v a typical design parameter;

a dot dcnotcs differentiation with respect to time. In many structural applications the

left-hand side of Eqs. (56) is A _r, where A is a matrix, and the methods discussed below

arc also applicable to that more general form.

Direct Method

The dircct method of obtaining sensitivity derivatives is based on differentiating

17



Eqs. (74) to obtain

dV jdU OF
dv dv =

(75)

where the Jacobian J is cgf/OU. Note that Eqs. (75) are a system of linear differential

equations, even if the original system, Eqs. (79), is nonlinear. Often derivatives of the

entire vector U are not required. Instead it is necessary to obtain the derivatives of a

function of U of the form.

fO t!
g(U,v) = p(U,t,v)dt (76)

where p is a functional representation of a time-dependent constraint and t I is a final time

for the response calculation. The direct approach obtains dg/dv as

dg f0t! [0p [Op_Tdu]_vv = Ovv + \O-U'] _ dt
(77)

where d U/dv is calculated in Eqs. (75).

Green's Function Method

Equation (75) have to be solved once for each design variable and are costly when

thc number of design variables is large. When the number of design variables is larger

than thc dimcnsionality of U, then the Green's function approach 9 is more efficicnt than
................ : .............. :.................... : ......................... :::.: :_ _ z_ = __

the dircct approach. An application of this approach is sensitivity analysis of transient

structural responsc, whcn the response is computed using reduction techniques such as

modal analysis. Thc sensitivity derivatives d U/dv is written as

/0dv (t) = K(t, T) (_-)dr (78)

18



where the Green's function K satisfies (recall that the dot denotes d/dt)

=0,
K(r,r) = I (79)

K(t, r) - J(t)K(t, r) = O, t > r

The efficiency of the Green's function approach is partly governed by the method used to

integrate Eqs. (79). A large amount of work on the efficient implementation of the Green's

function approach has been performed by Rabitz and co-workers. 39

Adjoint Variable Method

Further improvements in efficiency may bc possible if less information is needed. If

instead of the derivatives of the entire vector U, only those of a few functionals [e.g.,

Eq. (76)] are required, then an adjoint variable method is called for. The adjoint variable

approach solves first for the adjoint vector _ from the differential equation

-.b JTA = oqp
OU

= o

It is shown by Haftlm, Giirdal and Kamat 4° that

d--_ = _v _ ] dt

(8o)

(81)

Equations (8(}) arc a sct of linear differential equations that is integrated backward from

tf to zero. As in the steady-state case, the adjoint variable approach is preferred over the

direct approach when the number of functionals is less than the number of design variables.

Finite Difference Method

For sensitivity analysis of static response, the finite difference approach is almost al-

ways inferior toanalyticai methods. For the calculatiOn of derivatives of transient response,
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thisisnot always the c_se. W_ene_pUcit methods axe used for integratingthe diEerentia2

equations, the lineaxity of the sensitivity equations does not constitute a computational

advantage. Therefore, for the case of explicit integration, the finite di_erence approach is

often computationally superior to the direct method (see Re£ 41). When implicit integra-

tion techniques are used, the finite difference approach is less attractive computationally

but remains easier to implement than the d£rect approach.

Linear Structural Dynamics

For the case of linearstructuraldynamics itmay be advantageous to retainthe second-

order equations of motion rather than reduce them to a set of first-orderequations. It is

alsocommon to use modal reduction forthiscase.In thissectionwe discussthe application

of the directand adjoint methods to thisspecialcase. The equations of motion are written

as

MU + CU + KU = F(t) (82)

Most often the problem is reduced in size by expressing U in terms of m basis functions

@_, i = i,... m where m is usually much less than the number of degrees of freedom of the

original system Eq.(82)

u= Q (83)

where @ is a matrix with @i as columns. Then a reduced set of equations can be written

as

+ ¢¢ + RQ = (84)

where

(85)

When the basis functions axe the first m natural vibration modes of the structure scaled

to unit modal masses @ satisfies the equation

K@ - M4_fl 2 = 0 (86)

where 12 is a diagonal matrix with the ith natural frequency uJ_ in the ith row. In that case

= f_2 and M = I are diagonal matrices. For special forms of damping, _he damping

matrix _ is zlso diagonal so that the system Eq. (84) is uncoupled. ALter Q is cslcuL_ted

from Eq. (84) we can use Eq. (83) to calculate F. This method is known as the mode-

displacement methO K ......... :::: : :

When the load F has spatial discontinuities the convergence of the modal approxi-

mation, Eq. (83), can be very slow. The convergence can be dramatically accelerated by

2O



using the mode acceleration metho d . The mode acceleration method can be derived by

rewriting Eq. (82) as

U= K-1F - K-1C(] - K'IMO (87)

The first term in Eq. (87) is called the quasi-static solution because it represents the

response of the structure if the loads are applied very slowly. The second term and third

terms are approximated in terms of the modal solution. It can be shown (e.g., Greene 42)

that K-1 can be approximated as

K-1 = _fl-2¢T (88)

Using this approximation for the second and third terms of Eq. (87) we get

U ,.mK-IF - cI,fl_'2C'O - ¢fl-2O (89)

This approximation is exact when cI, contains the full set of vibration modes. Note that

and Q in Eq. (89) are obtained from the mode-displacement solution, Eq. (84). Therefore,

there is no difference in velocities and accelerations between the mode-displacement and

the mode acceleration.

In considering the calculation of sensitivities we treat first the mode-displacement

method. The direct method of calculating the response sensitivity is obtained by differen-

tiating Eq. (84) to obtain

where

• o °

ap o_ . Q (91)
R = dv _ "_-v Q - dv

Thc first step in forming this equation is thc calculation of the derivatives of F, M, C',

and/( with respect to v. Differentiation of k yields

+

with similar cxpressions for the derivatives of hT/, C, and F. The calculation is simplified

considcrably by using a fixed set of basis functions cI, or neglecting the effect of the change

in the modcs. In many cases the error associated with neglecting the effect of changing
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modesis small. When this error isunacceptablewehaveto facethe costly calculation of the

derivativesof the modesneededfor calculating the derivativesof the reducedmatrices, such

as Eq. Fortunately it was found by Greene42that the cost of calculating the derivativesof

the modes can be substantially reduced by using the modified modal method2_,keeping

only the first term in this equation. This approximation to the derivatives of the modes

may not always be accurate, but it appears to be sufficient for calculating the sensitivity

of the dynamic response.

For the adjoint method we consider a function in the form of Eq. (76)

_0 t!
g(Q, v) = p(Q, v, t)dt (93)

so that

dg t! Op Op _-_ )dt (94)

To avoid the calculation of dQ/dv we use an adjoint vector A, and start by multiplying

Eq. (90) by AT and integrating

j!ot1A T ( ll/l di_(_'vT C dd_QvT [(-dd-_v)dt = j!ot I AT Rdt
(95)

Integrating by parts we get

Assuming that the initial conditions do not dcpend on the design variable v, Eq.

suggcsts the following definition for A

(96)

_ .. c_P_T '
MA-C_'i+R'A=(_3- _,

22
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and then Eq. (94) becomes

dn
f] ts °qP - AT R)dt (98)

d'-_ - do (_

For the mode-acceleration method we consider only the direct method. We start by

differentiating Eq. (82) and rearranging it as

dU _ K_ 1 [ dF d_.K u _ c d(] d_.._C(] _ M dU-&v _v dv dv dv dv dMdvt)] (99)

Next we use Eq. (89) to approximate the second term, and the modal expansion Eq. (83)

to approximate the other terms to get

dU K_ 1 [dFdv -&v
dK [K_I F _ _bFt_2_(_ _ q_fl_2Q]_
dv

- d,, ]

Finally we use the modal approximation to K -1, Eq. (88) to obtain

(_oo)

(101)

[ dv

i°

dM <hi Q,- ¢f_-2 dQ
dv J dv

Note that the calculation involves the solution of Eqs. (84) and (90) for Q and dQ/dv,

followed by Eq. (101) for retrieving the dU/dv. Additional details can be found in 42.
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